Anatomical Landmark Tracking by One-shot Learned Priors for Augmented Active Appearance Models
نویسندگان
چکیده
For animal bipedal locomotion analysis, an immense amount of recorded image data has to be evaluated by biological experts. During this time-consuming evaluation single anatomical landmarks have to be annotated in each image. In this paper we reduce this effort by automating the annotation with a minimum level of user interaction. Recent approaches, based on Active Appearance Models, are improved by priors based on anatomical knowledge and an online tracking method, requiring only a single labeled frame. However, the limited search space of the online tracker can lead to a template drift in case of severe self-occlusions. In contrast, we propose a one-shot learned tracking-by-detection prior which overcomes the shortcomings of template drifts without increasing the number of training data. We evaluate our approach based on a variety of real-world X-ray locomotion datasets and show that our method outperforms recent state-of-the-art concepts for the task at hand.
منابع مشابه
2D and 3D analysis of animal locomotion from biplanar X-ray videos using augmented active appearance models
For many fundamental problems and applications in biomechanics, biology, and robotics, an in-depth understanding of animal locomotion is essential. To analyze the locomotion of animals, high-speed X-ray videos are recorded, in which anatomical landmarks of the locomotor system are of main interest and must be located. To date, several thousand sequences have been recorded, which makes a manual ...
متن کاملAnatomical Landmark Tracking for the Analysis of Animal Locomotion in X-ray Videos Using Active Appearance Models
X-ray videography is one of the most important techniques for the locomotion analysis of animals in biology, motion science and robotics. Unfortunately, the evaluation of vast amounts of acquired data is a tedious and time-consuming task. Until today, the anatomical landmarks of interest have to be located manually in hundreds of images for each image sequence. Therefore, an automatization of t...
متن کاملParsing radiographs by integrating landmark set detection and multi-object active appearance models
This work addresses the challenging problem of parsing 2D radiographs into salient anatomical regions such as the left and right lungs and the heart. We propose the integration of an automatic detection of a constellation of landmarks via rejection cascade classifiers and a learned geometric constellation subset detector model with a multi-object active appearance model (MO-AAM) initialized by ...
متن کاملDisjunctive Normal Shape and Appearance Priors with Applications to Image Segmentation
The use of appearance and shape priors in image segmentation is known to improve accuracy; however, existing techniques have several drawbacks. Active shape and appearance models require landmark points and assume unimodal shape and appearance distributions. Level set based shape priors are limited to global shape similarity. In this paper, we present a novel shape and appearance priors for ima...
متن کاملAugmented Reality: Active Appearance Model and Video Object Tracking
Augmented Reality (AR) technology for digital composition of animation with real scenes is to bring new experience to the viewers. Augmented Reality is a form of human-machine interaction. The key feature of the Augmented Reality technology is to present auxiliary information in the field of view for an individual automatically without human intervention. To achieve the new Augmented Reality ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017